skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lovegrove, Holly E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Oriented cell division is fundamental to development and tissue organization, requiring precise control of both spindle positioning and orientation. While cortical pulling forces mediated by dynein motor proteins are well-established drivers of spindle dynamics, the contribution of microtubule polymerization-based pushing forces remains unclear. We developed a generalizable computational biophysical model that integrates both pulling and pushing mechanisms to investigate spindle behavior across diverse cell types and geometries. This model successfully recapitulates experimental observations in three well-studied models:Drosophilafollicular epithelial cells,Drosophilaneuroblasts, and the earlyC. elegansembryo. Systematic analysis reveals that while pulling forces are the primary drivers of directed spindle orientation, pushing forces play crucial supporting roles by preventing spindle stalling and promoting alignment dynamics, particularly at high initial misalignment angles. We further applied our model to irregularly shaped zebrafish endothelial cells, which present unique challenges due to their non-spherical morphology and dynamic shape changes during mitosis. Our results demonstrate that asymmetric cortical force generator distributions, potentially localized at cell-cell junctions, can account for the observed off-center spindle positioning in these cells. This work provides a unified framework for understanding how the interplay between cell geometry, molecular polarity cues, and competing physical forces determines spindle dynamics, offering new insights into both canonical and non-canonical division orientations across cell types. 
    more » « less
    Free, publicly-accessible full text available September 24, 2026